МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет информатики и информационных технологий

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Теория вероятностей и математическая статистика»

Кафедра прикладной математики факультета математики и компьютерных наук

Образовательная программа бакалавриата:

10.03.01 - Информационная безопасность

Направленность (профиль) программы:

Безопасность компьютерных систем

Форма обучения:

Очная, очно-заочное

Статус дисциплины: входит в обязательную часть ОПОП Фонд оценочных средств по дисциплине «Теория вероятностей и математическая статистика» составлен в 2022 году в соответствии с требованиями ФГОС ВО бакалавриата по направлению подготовки 10.03.01 – Информационная безопасность от 17 ноября 2020 г. N 1427

азработчики:
афедра прикладной математики, Лугуева А.С. к.фм. н., доцент
онд оценочных средств по дисциплине «Теория вероятностей и математическая гатистика» одобрен: а заседании кафедры Прикладной математики т 25.02.2022 г., протокол № 6
ав. кафедрой Кадиев Р.И.
а заседании Методической комиссии факультета МиКН от т 24 марта 2022 г., протокол № 4 Председатель
Іредседатель — — Ризаев М.К.
Ронд оценочных средств «Теория вероятностей и математическая статистика» огласован с учебно-методическим управлением
31» марта 2022 г
Рецензент (эксперт):
Sab. Kages was away Asauly Paulagacol A. A
June

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Теория вероятностей и математическая статистика»

1.1. Основные сведения о дисциплине

Общая трудоемкость дисциплины составляет 4 зачетные единицы (144 академических часа).

Очная форма обучения

	Трудоемкость,	академических часов
Вид работы	2 семестр	всего
Общая трудоёмкость	144	144
Контактная работа:	64	64
Лекции (Л)	32	32
Практические занятия (ПЗ)	32	32
Лабораторные занятия (ЛЗ)		
Консультации		
Промежуточная аттестация (зачет, экзамен)	экзамен	
Самостоятельная работа	44	44
1. работа с лекционным материалом, с	8	8
учебной литературой		
2. опережающая самостоятельная работа	8	8
(изучение нового материала до его		
изложения на занятиях)		
3. выполнение домашних заданий	8	8
4. подготовка к лабораторным работам, к		
практическим занятиям	8	8
5. подготовка к коллоквиуму	6	6
6. подготовка к контрольным работам	6	6
Экзамен	36	36

Очно-заочная форма обучения

	Трудоемкость	ь, академических часов
Вид работы	4 семестр	всего
Общая трудоёмкость	144	144
Контактная работа:	32	32
Лекции (Л)	16	16
Практические занятия (ПЗ)	16	16
Лабораторные занятия (ЛЗ)		
Консультации		
Промежуточная аттестация (зачет, экзамен)	экзамен	
Самостоятельная работа	76	76
1. работа с лекционным материалом, с	12	12
учебной литературой		
2. опережающая самостоятельная работа	12	12
(изучение нового материала до его		
изложения на занятиях)		
3. выполнение домашних заданий	12	12
4. подготовка к лабораторным работам, к		
практическим занятиям	12	12
5. подготовка к коллоквиуму	12	12
6. подготовка к контрольным работам	16	16
Экзамен	36	36

1.2. Требования к результатам обучения по дисциплине, формы ихконтроля и виды оценочных средств

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Теория вероятностей и математическая статистика»

№ п/п	Контролируемые	Код	Оценочные средства		Способ контроля
	модули, разделы (темы) дисциплины	контролируемой компетенции (или её части)	наименование	№№ заданий	
1	МОДУЛЬ 1: Основы теории	ОПК-3	Вопросы для собеседования	1-11	устно
	вероятностей	ОПК-3	Контрольные работы	1	письменно
		ОПК-3	Тестовые задания	1-10	письменно
2	МОДУЛЬ 2: Случайные	ОПК-3	Вопросы для собеседования	12-25	устно
	величины	ОПК-3	Контрольные работы	2	письменно
		ОПК-3	Тестовые задания	11-20	письменно
3	МОДУЛЬ 3: Статистическая	ОПК-3	Вопросы для собеседования	26-40	устно
	оценка неизвестных	ОПК-3	Контрольные работы	3	письменно
	параметров распределений	ОПК-3	Тестовые задания	21-30	письменно
4	Экзамен	ОПК-3	Вопросы к экзамену		устно

1.3. Показатели и критерии определения уровня сформированности компетенций

No	Код		Уровни сформированности компетенции			
п/п	компет	Недостаточный	Удовлетворительн	Базовый	Повышенный	
	енции		ый (достаточный)			
		Отсутствие признаков	Знать:	Знать:	Знать:	
		удовлетворительного	Уметь:	Уметь:	Уметь:	
		уровня	Владеть:	Владеть:	Владеть:	
1	ОПК-3	Не знает на	Знает на	Знает на	Знает в	
		достаточном	достаточном	хорошем уровне:	совершенстве: -:	
		уровне:	уровне:	математические	математические	
		математические	математические	алгоритмы	алгоритмы	
		алгоритмы	алгоритмы	функционирован	функционирова	
		функционирования	функционировани	ия, принципы	ния, принципы	
		, принципы	я, принципы	построения,	построения,	
		построения,	построения,	модели хранения	модели	
		модели хранения и	модели хранения	иобработки	хранения и	

-				Г <u>-</u> -
	обработки данных	•		обработки
	распределенных		† †	данных
	информационных	распределенных	информационных	распределенных
	систем и систем	информационных	систем и систем	информационны
	поддержки	систем и систем	поддержки	х систем и
	принятия решений	поддержки	принятия	систем
	Не умеет на	принятия	решений	поддержки
	достаточном	решений	Умеет на	принятия
	уровне: применять	Умеет на	хорошем уровне:	решений
	математические	достаточном	применять	Умеет в
	модели процессов	уровне:	математические	совершенстве:
	и объектовпри	применять	модели	применять
	решении задач	математические	процессов и	математические
	анализа исинтеза	модели процессов	объектовпри	модели
	распределенных	и объектовпри	решении задач	процессов и
	информационных	решении задач	анализа исинтеза	объектовпри
	систем и систем	анализа исинтеза	распределенных	решении задач
	поддержки	распределенных	информационных	анализа и
	принятия решений	информационных	систем и систем	синтеза
	Не владеет на	систем и систем	поддержки	распределенных
	достаточном	поддержки		информационны
	уровне: - навыками	принятия	решений	х систем и
	построения	решений	Владеет на	систем
	математических	Владеет на	хорошем уровне: -	поддержки
	моделей для	достаточном	навыками	принятия
	реализации	уровне: -	построения	решений
	успешного	навыками	математических	Владеет в
	функционирования	построения	моделей для	совершенстве: -
	распределенных	математических	реализации	навыками
	информационных	моделей для	успешного	построения
	= =	реализации	функционирован	математических
	поддержки	успешного	ия	моделей для
	принятия решений	функционировани	распределенных	реализации
	-	я распределенных	информационных	успешного
		информационных	систем и систем	функционирова
				ния
			•	распределенных
		-	•	информационны
		решений	1	х систем и
		•		систем
				поддержки
				принятия
				решений.
			<u> </u>	

2. КОНТРОЛЬНЫЕ ЗАДАНИЯ И ИНЫЕ МАТЕРИАЛЫ ОЦЕНКИ знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения дисциплины «Теория вероятностей и математическая статистика»

Контрольные работы

Контрольная работа № 1

- 1.В клубе присутствуют 12 мужчин и 12 женщин. Сколько различных танцевальных пар можно организовать из них?
- 2.Из группы в 20 студентов для участия в олимпиаде выбирается 5 человек. Сколько различных команд можно организовать ?
- 3.Опыт состоит в бросании 3 монет. (Г "выпадение герба", Р -"выпадение решки"): Описать пространство элементарных событий, связанное с этим опытом (выписать все исходы).
- 4.Пусть событие A "герб выпал на двух монетах", B " герб выпал хотя бы на 2 монетах". Выписать события: A и B; C = A + B; D = AB
- 5. Сколькими способами можно составить волейбольную команду в 6 игроков из 12 игроков, среди которых 8 классных? Сколько можно составить таких команд, в которых половина классных игроков?
- 6.Сколькими способами можно рассадить 6 игроков команды на скамейку по местам с номерами от 1 до 6?
- 7. Что такое размещения, сочетания, чем они отличаются? Что такое перестановки? Напишите соответствующие формулы подсчета.

Контрольная работа № 2

- 1. В мешочке 5 одинаковых кубиков. На всех гранях каждого кубика написана одна из следующих букв: о,п,р,с,т. Найти вероятность того, что на вынутых по одному и расположенных «в одну линию» кубиков можно будет прочесть слово «спорт».
- 2. Вероятность того, что стрелок при одном выстреле выбьет 10 очков равна 0,1; вероятность выбить 9 очков равна 0,3; вероятность выбить 8 или меньше очков равна 0,6. Найти вероятность того, что при одном выстреле стрелок выбьет не менее 9 очков.
- 3. Чему равна вероятность того, что при бросании трех игральных костей 6 очков появится хотя бы на одной из костей.
- 4. При отключении от нормального режима работы автомата срабатывает сигнализатор с-1 с вероятностью 0.8, а сигнализатор с-11 срабатывает с вероятностью 1. Вероятности того, что автомат снабжен сигнализатором с -1 или с-11 соответственно равны 0,6 и 0,4. Получен сигнал о разделке автомата. Что вероятнее: автомат снабжен сигнализатором с-1 или с-11?
- 5. Событие В появится в случае, если событие А появится не менее двух раз. Найти вероятность того, что наступит событие В, если будет произведено 6 независимых испытаний, в каждом из которых вероятность появления события А равна 0,4.

Контрольная работа №3

- 1. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартное равна 0,9. В каждой партии содержится пять изделий. Найти математическое ожидание дискретной случайной величины X- числа партий, в каждой из которых окажется ровно четыре стандартных изделия, если проверке подлежат 50 партий.
- 2. Найти дисперсию дискретной случайной величины X- числа появлений события A в двух независимых испытаниях, если вероятности появления события в этих испытаниях одинаковы и известно, что M(X)=0,9.
- 3. Дискретная случайная величина X имеет только три возможных значения: x1, x2, и x3, причем x1 < x2 < x3. Вероятности того, что X примет значения x1 и x2 соответственно равны. 0,3 и 0,2. Найти закон распределения величины X, зная ее математическое ожидание M(X) = 2,2 и дисперсию D(X) = 0,76.
 - 4. Случайная величина имеет плотность вероятностей

$$f(x) = \begin{cases} 0, x < 0; \\ c/(1+x^2), \ 0 \le x \le 1; \\ 0, \ x > 1. \end{cases}$$

Найти постоянный параметр с, математическое ожидание и дисперсию.

5. Случайная величина X распределена равномерно в интервале [-1,4]. Найти P(X>0).

Критерии оценки:

- оценка «отлично» выставляется студенту, если верно и правильно выполнено 90%- 100% заданий;
- оценка «хорошо» выставляется студенту, если верно и правильно выполнено 70%-80% заданий;
- оценка «удовлетворительно» выставляется студенту, если верно и правильно решено 50%-60% заданий, возможны некоторые исправления при решении;
- оценка «неудовлетворительно» выставляется студенту, если верно выполнено менее 50% заданий;

Вопросы для коллоквиумов, собеседования

МОДУЛЬ 1: Основы теории вероятностей.

- 1. Множества. Операции с множествами.
- 2. Формулы перестановки, размещения и сочетания.
- 3. Различные подходы к определению вероятности. События и действия над ними. Примеры. Комбинаторика. Сочетания, размещения, перестановки.
- 4. Вероятности событий. Классическое и геометрическое определения вероятности случайного события.
- 5. Примеры: схема равновозможных исходов, геометрические вероятности.
- 6. Условная вероятность события.
- 7. Условная вероятность. Теорема умножения.
- 8. Формулы полной вероятности и Байеса. Независимость случайных событий.
- 9. Вероятностное пространство.
- 10. Аксиомы теории вероятностей.
- 11. Простейшие следствия из аксиом.

МОДУЛЬ 2: Случайные величины

- 12. Случайные величины и их распределения.
- 13. Дискретный и непрерывный типы распределений.
- 14. Функция распределения и плотность распределения, их свойства.
- 15. Примеры дискретных и непрерывных случайных величин.
- 16. Математическое ожидание и дисперсия.
- 17. Определения. Формулы расчета.
- 18. Вычисление математического ожидания и дисперсии основных дискретных случайных величин.
- 19. Математическое ожидание и дисперсия.
- 20. Определения. Формулы расчета.
- 21. Вычисление математического ожидания и дисперсии основных непрерывных случайных величин.
- 22. Закон больших чисел в форме Чебышева.
- 23. Неравенство Чебышева.
- 24. Теорема Бернулли и Пуассона.
- 25. Понятие об усиленном законе больших чисел.

МОДУЛЬ 3: Статистическая оценка неизвестных параметров распределений

- 26. Генеральная и выборочная совокупности.
- 27. Вариационный ряд, интервальный вариационный ряд.
- 28. Полигон, гистограмма.

- 29. Статистические ряды.
- 30. Эмпирическая функция распределения.
- 31. Выборочные моменты
- 32. Мода и соглашения об ее использовании
- 33. Медиана и ее связь с процентилями. Среднее.
- 34. Размах, дисперсия, стандартное отклонение, асимметрия, эксцесс
- 35. Парная регрессия.
- 36. Множественная регрессия.
- 37. Другие виды регрессий
- 38. Основные понятия теории статистического вывода.
- 39. Примеры параметрических критериев.
- 40. Непараметрические критерии знаков, Вилкоксона, и др.

Практические задания для коллоквиума.

8.Из группы в 20 студентов для участия в олимпиаде выбирается 5 человек. Сколько различных команд можно организовать ?

9. Опыт состоит в бросании 3 монет. (Г - "выпадение герба", Р - "выпадение решки"): Описать пространство элементарных событий, связанное с этим опытом (выписать все исходы).

- 10. Пусть событие A "герб выпал на двух монетах", B " герб выпал хотя бы на 2 монетах".Выписать события: A и B; C = A + B; D = AB
- 11. Сколькими способами можно составить волейбольную команду в 6 игроков из 12 игроков, среди которых 8 классных ?
 - 12. Сколько можно составить таких команд, в которых половина классных игроков?
- 13. Сколькими способами можно рассадить 6 игроков команды на скамейку по местам с номерами от 1 до 6?
- 14. Что такое размещения, сочетания, чем они отличаются? Что такое перестановки? Напишите соответствующие формулы подсчета.
 - 15. Найти вероятность событий A, B, C, D из примера 3.
- 16. Студент знает 10 из 15 вопросов коллоквиума. Чему равна вероятность того, что он ответит на 2 из заданных 3 вопросов.
- 17. В 1-ой урне имеются 4 б. и 6 ч. шаров, во 2-ой соответственно 4 б. и 2 ч. Из каждой урны случайно выбирают по одному шару.
- 18. Найти вероятности следующих событий: а) "оба шара белые"-А; б) "хотя бы 1 из них белый"-В с) "оба шара черные"-С.
 - 19. Что такое событие? Что такое сумма двух событий? Произведение? Разность?
- 20. Составляют или нет события A, B, C из примера 10 полную группу событий, полную группу попарно несовместимых событий? Определите эти понятия.
- 21. В ящике 3 белых и 2 черных шара. Из ящика вытаскивают 1 шар отмечает цвет и возвращают обратно. Затем берут второй шар. Событие A " 1 белый шар", событие B " второй белый шар". Найти вероятности событий: A и B; C = A + B; D = AB
- 22. В ящике 3 белых и 2 черных шара. Из ящика вытаскивают 1 шар. Затем берут второй шар. Событие A " 1 белый шар", событие B " второй белый шар". Найти вероятность событий: A B; B; C = A + B

Критерии оценки:

- оценка «отлично» выставляется студенту, если изложение полученных знаний в устной форме полное, в системе, в соответствии с требованиями учебной программы; допускаются единичные несущественные ошибки, самостоятельно исправляемые учащимися;
- оценка «хорошо» выставляется студенту, если изложение полученных знаний в устной форме полное, в системе, в соответствии с требованиями учебной программы; допускаются, отдельные несущественные ошибки, исправляемые учащимися после указания преподавателя на них;
- оценка «удовлетворительно» выставляется студенту, если изложение полученных знаний неполное, однако это не препятствует усвоению последующего программного материала;

допускаются отдельные существенные ошибки, исправляемые с помощью преподавателя;

- оценка «неудовлетворительно» выставляется студенту, если изложение учебного материала неполное, бессистемное, что препятствует усвоению последующей учебной информации; существенные ошибки, не исправляемые даже с помощью преподавателя;

Комплект тестовых заданий для контроля

1. Дан закон распределения вероятностей дискретной случайной величины X:

	X	1	2	3	4
ſ	P	0,2	0,3	а	0,1

Тогда значение а равно

- 1. 0,6
- 2. 0,3
- 3. 0,4
- 4. 16
- 5. 0.36
 - 2. Вероятность появления события A в 5 независимых испытаниях, проводимых по схеме Бернулли, равна 0,7. Тогда дисперсия числа появлений этого события равна
- 1. 2.32
- 2. 1,05
- 3. 0.3
- 4. 0.35
 - 3. Математическое ожидание дискретной случайной величины ξ , заданной законом распределения

X	-4	6	10
p	0,2	0,3	0,5

равно

4. Дисперсия случайной величины ξ , заданной законом распределения

X	1	2	5
p	0,3	0,5	0,2

равно

- 1. 2,01
- 2. 1,4
- 3. 3,2
- 4. 4,03
- 5. 1.73
 - 5. Математическое ожидание случайной величины X числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных, равно
- 1. 0,4
- 2. 2,3
- 3. 2,4
- 4. 1,6
 - 6. Пусть n число независимых испытаний, p вероятность появления события в одном испытании (q = 1 p), тогда математическое ожидание биномиально распределенной случайной величины равно
- 1. $M(\xi) = npq$

- 2. $M(\xi) = np$
- 3. $M(\xi) = pq$
- 4. $M(\xi) = nq$
 - 7. Среди 20 книг, стоящих на полке, 8 книг по математической статистике. Случайная величина X - число книг по математике из четырёх случайно взятых с этой полки книг. Среднее квадратическое отклонение случайной величины Х
 - 1. ≈0,144
 - $2. \approx 0.1987$
 - 3. ≈0,899
 - 4. ≈0.5
 - закон распределения вероятностей дискретной случайной величины X: 8.

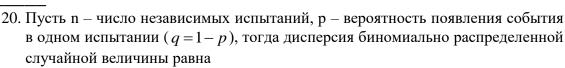
X	1	2	3	4
Р	0,2	а	0,3	0,2

Тогда значение a равно

- 1. 33
- 2. -0.03
- 3. 0.2
- 4. 0,3
- 5. 0,03
 - 9. Пусть ξ дискретная случайная величина число появлений некоторого события в п независимых испытаниях, в каждом из которых вероятность появления события равна р. Вероятность того, что ξ примет значение k – определяется по формуле Бернулли. Формулой Бернулли является
- 1. $P_n(k) = C_n^k (1-p)^k p^{n-k}$
- 2. $P_k(n) = C_k^n p^n (1-p)^k$
- 3. $P_n(k) = C_n^k p^k (1-p)^{n-k}$
- 4. $P_n(k) = C_n^k (1-p)^n p^k$
 - 10. Пусть ξ дискретная случайная величина число появлений некоторого события в п независимых испытаниях. Вероятность того, что ξ примет значение к – число появлений события, определяется по формуле Пуассона, если число испытаний велико, а вероятность р появления события в каждом испытании мала. Если обозначить $\lambda = np$ среднее число появления события в п испытаниях, то формула Пуассона примет вид
- 1. $P_n(k) = \frac{\lambda^k e^{\lambda}}{k!}$
- 2. $P_n(k) = \frac{\lambda e^{\lambda}}{k!}$ 3. $P_n(k) = \frac{\lambda^k e^{-\lambda}}{k!}$
- $P_n(k) = \frac{\lambda^k e^{-\lambda}}{k}$
 - 11. Вероятность появления события А в 20 независимых испытаниях, проводимых по схеме Бернулли, равна 0,6. Тогда математическое ожидание числа появлений этого события равна

1	12	
	0,03	
	0,03	
	0,42	
- . 5.		
٥.	_	The potential of the property
	12.	Дискретная случайная величина ξ принимает три возможных значения: $x_1 = 4$
		с вероятностью $p_1 = 0.5$; $x_2 = 6$ с вероятностью $p_2 = 0.3$ и $x_3 = 21$ с
		вероятностью p_3 . Вероятность p_3 . равна
1.	0,6	
2.	0,3	
3.	0,4	
4.	0,6	
	13.	Дисперсия дискретной случайной величины ξ – числа появлений события A в
		пяти независимых испытаниях, если вероятность появления события А в
		каждом испытании равна 0,2 равна
	0,8	
	0,2	
	1	
	0,1	
5.	0,5	
	14.	Из орудия производится стрельба по цели до первого попадания. Вероятность
		попадания в цель $p = 0.6$ при каждом выстреле. Случайная величина X - число
		возможных выстрелов до первого попадания. Математическое ожидание
1	5 (0	случайной величины X равно
	5/3	
	0,1	
	4/3	
	0,2 0,3	
٥.		Charty 20 revers an agreement to have a restrictive of the second contractive of the second cont
	13.	Среди 20 книг, стоящих на полке, 8 книг по математической статистике. Случайная величина X - число книг по математике из четырёх случайно взятых
		с этой полки книг. Математическое ожидание случайной величины X равно
1	1,6	с этон полки книг. глатематическое ожидание случаиной величины х равно
	0,1	
	1,4	
	2,2	
	6,3	
٠.		Среди 20 книг, стоящих на полке, 8 книг по математической статистике.
	- 3.	Случайная величина X - число книг по математике из четырёх случайно взятых

с этой полки книг. Дисперсия случайной величины X равна


17. Среди 20 книг, стоящих на полке, 8 книг по математической статистике. Случайная величина X - число книг по математике из четырёх случайно взятых с этой полки книг. Среднее квадратическое отклонение случайной величины X

1. ≈ 0.81 2. ≈ 0.14 3. ≈ 0.46 4. ≈ 0.2 5. ≈ 0.3

1. ≈ 0.144 2. ≈ 0.1987

равно

4.	≈ 0,0 ≈ 0,5 ≈ 1,7	5
	19	. Дискретная случайная величина ξ принимает три возможных значения: x_1 =1 с вероятностью p_1 =0,1; x_2 =2 с вероятностью p_2 =0,3; x_3 =4 с вероятностью p_3 =0,6. Центральный момент первого порядка равен
	20	——). Пусть $n-$ число независимых испытаний, $p-$ вероятность появления события в одном испытании ($q=1-p$), тогда дисперсия биномиально распределенной спультий велиции в равиа

- 1. $D(\xi) = np$
- 2. $D(\xi) = npq$
- 3. $D(\xi) = pq$
- 4. $D(\xi) = nq/p$
 - **21.** Дан перечень возможных значений дискретной случайной величины ξ : $x_1 = -1$, $x_2 = 0$, $x_3 = 1$, а также известны математические ожидания этой величины и ее квадрата: $M(\xi)=0,1$; $M(\xi^2)=0,9$. Вероятность p_3 , соответствующую возможному значению x_3 равна
- 1. 0,3
- 2. 0,1
- 3. 0,4
- 4. 0,2
- 5. 0,5
 - 22. Из орудия производится стрельба по цели до первого попадания. Вероятность попадания в цель р = 0,6 при каждом выстреле. Случайная величина X - число возможных выстрелов до первого попадания. Математическое ожидание случайной величины Х равно
- 1. 5/3
- 2. 0.1
- 3. 4/3
- 4. 0,2
- 5. 0.3
 - 23. Вероятность появления события А в 20 независимых испытаниях, проводимых по схеме Бернулли, равна 0,5. Тогда дисперсия числа появлений этого события равна_
 - 24. Вероятность появления события А в 20 независимых испытаниях, проводимых по схеме Бернулли, равна 0,5. Тогда математическое ожидание числа появлений этого события равно_
 - функция распределения непрерывной случайной величины $F(x) = \frac{1}{2} + \frac{1}{\pi} arctg \frac{x}{2}$. Плотность распределения равна
- 1. $f(x) = \frac{1}{2} + \frac{1}{\pi(x^2 + 4)}$

$$2. \quad f(x) = \frac{4}{\pi(x^2 + u)}$$

3.
$$f(x) = \frac{2}{\pi(x^2 + 4)}$$

$$4. \quad f(x) = \frac{1}{\pi(x^2 + u)}$$

$$5. \quad f(x) = \frac{2}{x^2 + 4}$$

26. Дана функция распределения непрерывной случайной $F(x) = \begin{cases} 0 & npu & x < 0, \\ 1 - e^{-3x} & npu & x \geq 0. \end{cases}$ Плотность распределения равна величины

1.
$$f(x) = \begin{cases} 0 & npu & x < 0, \\ 1 + e^{-3x} & npu & x \ge 0. \end{cases}$$

2.
$$f(x) = \begin{cases} 0 & npu & x < 0, \\ -e^{-3x} & npu & x \ge 0. \end{cases}$$
3.
$$f(x) = \begin{cases} 0 & npu & x < 0, \\ 3e^{-3x} & npu & x \ge 0. \end{cases}$$

3.
$$f(x) = \begin{cases} 0 & npu \quad x < 0, \\ 3e^{-3x} & npu \quad x \ge 0. \end{cases}$$

4.
$$f(x) = \begin{cases} 0 & npu & x < 0, \\ -3e^{-3x} & npu & x \ge 0. \end{cases}$$

27. Формула, выражающая функцию распределения F(x) непрерывной случайной величины через плотность распределения равна

1.
$$F(x) = \int_{-\infty}^{x} f(t)dt$$

$$2. \quad F(x) = \int_{0}^{x} f(t)dt$$

$$3. \quad F(x) = \int_{-x}^{x} f(t)dt$$

4.
$$F(x) = \int_{1}^{x} f(t)dt$$

$$5. \quad F(x) = \int_{-\infty}^{+\infty} f(t)dt$$

28. Дана плотность распределения непрерывной случайной величины

$$F(x) = \begin{cases} 0, & npu & x \le 1, \\ x - 1/2, & npu & 1 < x \le 2, \\ 0, & npu & x > 2. \end{cases}$$

Функция распределения F(x) равна

1.
$$F(x) = \begin{cases} 0, & npu & x \le 1, \\ x^2/2, & npu & 1 < x \le 2, \\ 1, & npu & x > 2. \end{cases}$$

2.
$$F(x) = \begin{cases} 0, & npu & x \le 1, \\ (x^2 - x)/2, & npu & 1 < x \le 2, \\ 1, & npu & x > 2. \end{cases}$$
3.
$$F(x) = \begin{cases} 0, & npu & x \le 1, \\ (x - 1)^2/2, & npu & 1 < x \le 2, \\ 0, & npu & x > 2. \end{cases}$$
4.
$$F(x) = \begin{cases} 0, & npu & x \le 1, \\ 1/2, & npu & 1 < x \le 2, \\ 1, & npu & x > 2. \end{cases}$$

3.
$$F(x) = \begin{cases} 0, & npu & x \le 1, \\ (x-1)^2/2, & npu & 1 < x \le 2, \\ 0, & npu & x > 2. \end{cases}$$

4.
$$F(x) = \begin{cases} 0, & npu & x \le 1, \\ 1/2, & npu & 1 < x \le 2, \\ 1, & npu & x > 2. \end{cases}$$

29. Случайная величина ξ задана функцией распределения:

$$F(x) = \begin{cases} 0 & npu & x \le -1\\ \frac{3}{4} + \frac{3}{4}x & npu & -1 < x \le \frac{1}{3}\\ 1 & npu & x > \frac{1}{3} \end{cases}$$

- 30. Вероятность того, что в результате равна испытания величина ξ примет значение, заключенное в интервале (0;1/3) равна
- 1. 2/3
- 2. 4/5
- 3. 1/3
- $4. \frac{1}{2}$

Критерии оценки:

- оценка «отлично» выставляется студенту, если верно и правильно выполнено 90%-100% заданий;
- оценка «хорошо» выставляется студенту, если верно и правильно выполнено 70%-80% заданий;
- оценка «удовлетворительно» выставляется студенту, если верно и правильно решено 50%-60% заданий, возможны некоторые исправления при решении;
- оценка «неудовлетворительно» выставляется студенту, если верно выполнено менее 50% заданий;

Темы эссе (рефератов, докладов, сообщений)

- 1. История возникновения теории вероятностей. Классическая задача Шевалье де Мере.
- 2. Комбинаторные методы в теории вероятностей.
- 3. Геометрическая вероятность как расширение классического определения вероятностей.
- 4. Классическая задача о разорении игрока и ее моделирование на ЭВМ.
- 5. Геометрическая вероятность. «Задача о встрече» и ее моделирование на ЭВМ.
- 6. Аксиоматическое построение теории вероятностей акад. Колмогорова А.Н.
- 7. Некоторые философские проблемы теории вероятностей.
- 8. Предельные теоремы теории вероятностей и ее практические приложения.
- 9. Независимость событий. Пример Бернштейна.
- 10. Задача Банаха о спичечных коробках и ее моделирование на ЭВМ.
- 11. Нормальное распределение вероятностей и его роль в математико- статистических исследованиях.

- 12. О методах моделирования случайных величин.
- 13. Приближенное вычисление числа π методом Монте-Карло.
- 14. Математическая статистика как самостоятельная наука. Связь с теорией вероятностей.
- 15. Показательно распределение вероятностей и его приложение: задача теории переноса излучений и моделирование систем массового обслуживания.

Реферат оценивается следующим образом:

- соответствие содержания теме- 4 балла;
- глубина проработки материала, 3 балла;
- грамотность и полнота использования источников, 1 балл;
- соответствие оформления реферата требованиям, 2 балла;
- доклад, 5 баллов;
- умение вести дискуссию и ответы на вопросы, 5 баллов.

Максимальное количество баллов: 20.

Критерии оценки:

- оценка «отлично» выставляется студенту, если набрал 19-20 баллов;
- оценка «хорошо» выставляется студенту, если набрал 15-18 баллов;
- оценка «удовлетворительно» выставляется студенту, если набрал 10-14 баллов; оценка «неудовлетворительно» выставляется студенту, если набрал менее 10 баллов

Вопросы к экзамену

- 1. Аксиомы теории вероятностей. Свойства вероятностей.
- 2. Геометрические вероятности. Свойство вероятностей.
- 3. Дисперсия и ее свойства.
- 4. Дисперсия основных дискретных распределений.
- 5. Дисперсия основных непрерывных распределений.
- 6. Закон больших чисел. Следствие из теоремы Чебышева: теорема о среднем. Теорема умножения вероятностей. Независимость событий.
- 7. Интегральная теорема Муавра-Лапласа. Применение.
- 8. Классические определения вероятности. Свойства вероятности.
- 9. Коэффициент корреляции и его свойства.
- 10. Локальная теорема Муавра-Лапласа. Применение.
- 11. Математические ожидания основных непрерывных распределений.
- 12. Математическое ожидание и его свойства.
- 13. Математическое ожидание основных дискретных распределений.
- 14. Многомерные случайные величины. Независимость случайных величин.
- 15. Независимость случайных величин.
- 16. Неравенство Чебышева.
- 17. Нормальный закон распределения, его параметры. Графики плотности и функции распределений.
- 18. Основные непрерывные случайные величины. Их числовые характеристики.
- 19. Основные формулы комбинаторики. Примеры.
- 20. Последовательности независимых испытаний. Формула Бернулли.
- 21. Распределение суммы двух независимых величин.
- 22. Распределение суммы двух независимых нормальных случайных величин.
- 23. Случайные величины. Основные дискретные случайные величины.
- 24. События и действия над ними.
- 25. Статистическое определение вероятности. Свойства вероятности.

- 26. Теорема Пуассона.
- 27. Теорема сложения вероятностей.
- 28. Теорема умножения вероятностей. Независимость случайных событий.
- 29. Условная вероятность.
- 30. Формула Байеса.
- 31. Формула Бернулли. Свойства вероятностей Pn(m)
- 32. Формула полной вероятности
- 33. Функция распределения и ее свойства.
- 34. Характеристическая функция и ее свойства.
- 35. Характеристическая функция. Вычисление моментов случайной величины с помощью характеристической функции. Пример.
- 36. Характеристические функции основных дискретных распределений.
- 37. Центральная предельная теорема.
- 39. Выборочные характеристики и их асимптотические свойства.
- 40. Двумерная случайная величина. Независимость случайных величин. Коэффициент корреляции. Выборочный коэффициент корреляции.
- 41. Доверительное оценивание параметров. Доверительный интервал для М.О. нормального закона распределения.
- 42. Доверительный интервал для дисперсии нормального закона распределения.
- 43. Достаточные статистики. Критерий факторизации.
- 44. Задача оценивания параметров. Оценки и их свойства.
- 45. Интервальная оценка для неизвестного математического ожидания нормально распределенной генеральной совокупности (неизвестно).
- 46. Интервальная оценка для неизвестной вероятности события.
- 47. Исследование зависимостей. Простое линейное уравнение регрессии.
- 48. Коэффициент корреляции и его свойства. Выборочный коэффициент корреляции. Проверка значимости выборочного коэффициента корреляции.
- 49. Критерий независимости хи-квадрат.
- 50. Критерий проверки гипотезы о равенстве дисперсий двух нормально распределенных совокупностей.

Критерии оценки:

«отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко;

«хорошо» - теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками;

«удовлетворительно» - теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки;

«неудовлетворительно» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

Рекомендуемые границы оценок:

«отлично» - не менее 86% правильных ответов,

«хорошо» - 66-85% правильных ответов,

«удовлетворительно» - 51-65% правильных ответов,

«неудовлетворительно» - менее 50% правильных ответов